

available at www.sciencedirect.com

Regulation of α_2 AR trafficking and signaling by interacting proteins

Qin Wang a,*, Lee E. Limbird b,1

ARTICLE INFO

Article history: Received 11 September 2006 Accepted 20 December 2006

Keywords: α_2 -Adrenergic receptor Protein–protein interaction Arrestin Spinophilin G protein-coupled receptor kinase 14-3-3 ζ

ABSTRACT

The continuing discovery of new G protein-coupled receptor (GPCR) interacting proteins and clarification of the functional consequences of these interactions has revealed multiple roles for these events. Some of these interactions serve to scaffold GPCRs to particular cellular micro-compartments or to tether them to defined signaling molecules, while other GPCR–protein interactions control GPCR trafficking and the kinetics of GPCR-mediated signaling transduction. This review provides a general overview of the variety of GPCR–protein interactions reported to date, and then focuses on one prototypical GPCR, the α_2 AR, and the in vitro and in vivo significance of its reciprocal interactions with arrestin and spinophilin.

It seems appropriate to recognize the life and career of Arthur Hancock with a summary of studies that both affirm and surprise our preconceived notions of how nature is designed, as his career-long efforts similarly affirmed the complexity of human biology and attempted to surprise pathological changes in that biology with novel, discovery-based therapeutic interventions. Dr. Hancock's love of life, of family, and of commitment to making the world a better place are a model of the life well lived, and truly missed by those who were privileged to know, and thus love, him.

© 2007 Elsevier Inc. All rights reserved.

1. Introduction

The α_2 adrenergic receptor (AR) belongs to the G proteincoupled receptor (GPCR) superfamily. In vivo, activation of the α_2 AR by endogenous ligand, epinephrine and norepinephrine, leads to decrease in epileptogenesis [1] and anxiety [2]. In response to α_2 -agonists, the α_2 AR activation can lower blood pressure by central mechanisms [3,4], evoke sedation [5], reduce pain perception [5,6], and improve working memory [7–9]. There are three subtypes of α_2 ARs, α_{2A} -, α_{2B} - and α_{2A} AR, which are encoded by three different genes but all couple to the $G_{i/o}$ subfamily of G proteins to inhibit adenylyl cyclase and voltage-gated Ca^{2+} channels and to activate receptor-operated K^+ channels and mitogen-activated protein kinase (MAPK) in native cells [10–12].

Abbreviations: GPCR, G protein-coupled receptor; α_2AR , α_2 -adrenergic receptor; RGS, regulatory of G protein signaling; MAPK, mitogenactivated protein kinase; GRK, G protein-coupled receptor kinase; eIF, eukaryotic translation initiation factor; APLP, amyloid precursor like protein; APP, amyloid precursor protein; ERK, extracellular signal-regulated kinase; JNK, c-Jun amino-terminal kinase; MEF, mouse embryonic fibroblast; PP1, protein phosphatase 1; PDZ, PSD-95/Discs large/ZO-1 homology 0006-2952/\$ – see front matter © 2007 Elsevier Inc. All rights reserved.

^a Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, AL 35294, United States

^b Department of Biomedical Sciences, Meharry Medical College, Nashville, TN 37208, United States

^{*} Corresponding author. Tel.: +1 205 996 5099; fax: +1 205 975 9028. E-mail addresses: qinwang@uab.edu (Q. Wang), llimbird@mmc.edu (L.E. Limbird).

¹ Tel.: +1 615 327 6063; fax: +1 615 627 6144.

Discovery of regulatory of G protein signaling (RGS) proteins a decade ago has changed the historic view of GPCR signaling as simplistic coupling of receptors to G proteins to effectors. Additionally, protein-protein interactions are now appreciated as a critical means to fine tune GPCR functions. GPCR-interacting proteins can regulate both receptor trafficking and receptor-mediated signaling. The α_2AR has been identified to interact with a number of proteins, including GPCRs, kinases and scaffolding proteins such as 14-3-3ζ, arrestin and spinophilin (see Table 1). Interactions of the α_2AR with some of these proteins have been implicated in controlling α₂AR surface internalization, signaling retention, desensitization, response sensitivity as well as scaffolding α2AR-mediated intracellular signaling. In this review, we focus on α_2AR interaction with scaffolding proteins and the functions these proteins play in regulating α_2AR trafficking and signaling.

2. Proteins interacting with the α_2AR

2.1. GPCRs

Accumulating evidence indicates that homo- and heterodimerization (or oligomerization) of GPCRs exist in vivo and may represent an important mechanism for complex GPCR functions [13,14]. The $\alpha_{2A}AR$ has been reported to form homodimers [15,16] as well as to interact with some other GPCRs to form heterodimers. Compared to the $\alpha_{2A}AR$ homodimerization, heterodimerization of the $\alpha_{2A}AR$ subtype with the $\alpha_{2C}AR$ subtype significantly attenuates agonist-induced phosphorylation of the $\alpha_{2A}AR$ subtype, leading to a reduction of arrestin binding as well as arrestin-mediated Akt activation by α_2 -agonist [16]. Heterodimerization of $\alpha_{2A}AR$ and β_1AR in HEK cells significantly alters ligand binding properties of the β_1AR but that of not the $\alpha_{2A}AR$, and leads to internalization of β_1AR in response to α_2 -agonists [17]. On the other hand,

Interacting protein(s)	α_2 AR subtype(s)	Functional role(s) implicated	Reference(s)
GPCR dimerization			
Homo-dimerization			
	α_{2A}	Precoupled to G proteins	[15]
Hetero-dimerization			
$\alpha_{2C}AR$	α_{2A}	Attenuating agonist-induced $\alpha_{2A}AR$ phosphorylation,	[16]
		reducing arrestin binding to the $\alpha_{2A}AR$	
β ₁ AR	α_{2A}	Altering ligand binding properties of β_1AR , leading to	[17]
		internalization of β_1AR in response to α_2 -agonist	
β ₂ AR	α_{2C}	Enhancing surface expression and internalization	[18]
		of $\alpha_{2C}AR$, enhancing ERK activation by $\alpha_{2C}AR$	
μOR	α_{2A}	Enhancing morphine-induced GTP γ S binding and	[19,20]
		ERK activation; however, no transactivation of G	
		proteins, no interdependent internalization	
δOR	α_{2A}	Enhancing δOR-mediated neurite outgrowth	[21]
Kinases			
GRK2	α_{2A} , α_{2B}	Mediating agonist-induced phosphorylation and	[26,27,29]
		homologous desensitization	
PKC	α_{2A}	Mediating heterologous desensitization; affecting	[30–33]
		constitutive activity of $\alpha_{2A}AR$	
Proteins interacting with the	C-tail of α ₂ AR		
eIF-2B	α_{2A} , α_{2B} , α_{2C}	Function unknown	[35]
APLP1	α_{2A} , α_{2B} , α_{2C}	Increasing $\alpha_{2A}AR$ -mediated inhibition of adenylyl	[36]
		cyclase activity	
Proteins interacting with the	3i loop of α ₂ AR		
14-3-3ζ	$\alpha_{2A}, \alpha_{2B}, \alpha_{2C}$	Function unknown, competed by phosphorylated	[43,47]
		Raf peptide	
Spinophilin	α_{2A} , α_{2B}	Stabilizing receptor at surface, attenuating	[44,47,51,86
		phosphorylation, decelerating ERK signaling rate,	
		decreasing in vivo response sensitivity	
	α_{2C}	Function unknown	[44]
Arrestin 3	α_{2A} , α_{2B}	Stabilizing receptor phosphorylation, mediating	[45–47,51]
		endocytosis and desensitization, accelerating ERK	. , ,
		signaling rate, enhancing in vivo response sensitivity	
	α_{2C}	Function unknown	[46]
Arrestin 2		Affinity is lower than arrestin 3	[46]

heterodimerization of $\alpha_{2C}AR$ with β_2AR notably reduces the intracellular pool of $\alpha_{2C}AR$ in HEK cells, and such increased $\alpha_{2C}AR$ surface expression results in enhanced $\alpha_{2C}AR$ internalization and ERK activation in response to α_2 -agonist stimulation [18].

Adrenergic-opioid synergism in induction of spinal analgesia has long been noted [6]. Interactions of the $\alpha_{2A}AR$ with the mu [19,20] and delta [21] opioid receptors (OR) have been observed in both heterologous cells and neurons. In cells coexpressing MOR with the $\alpha_{2A}AR$, morphine (MOR agonist) treatment led to a significant higher level of GTP_γS binding and ERK activation than in cells expressing MOR alone [19]. Coexpression of $\alpha_{2A}AR$ with DOR also enhanced DORmediated neurite outgrowth [21]. These data suggest that physical interaction between opioid receptors and the $\alpha_{2A}AR$ leads to functional interaction between these receptors at the cellular level [19,21]. Intriguingly, simultaneous stimulation with a combination of opiods and α_2 -agonists caused a decrease of MOR- $\alpha_{2A}AR$ interaction as well as a remarkable reduction of MOR-mediated signaling in cells coexpressing these two receptors [19]. Also, hetero-oligomers of $\alpha_{2A}AR$ and MOR did not lead to transactivation of G proteins or interdependent redistribution on one another following agonist treatment [20]. Taken together, while physical interaction between $\alpha_{2A}AR$ and MOR represents a potential molecular mechanism contributing to the observed adrenergic-opioid synergism, additional complex mechanisms likely underlie functional cross-talk of adrenergic-opioid system in υίυο.

2.2. Kinases

Like most GPCRs, the α_2AR is substrate of G protein-coupled receptor kinases (GRKs). The GRKs represent a family of seven members with serine threonine kinase activity. GRKs 1 and 7 phosphorylate rhodopsin and iodopsin, respectively, in the visual system. GRK4 is mainly expressed in testes. GRKs 2, 3, 5 and 6 are ubiquitously expressed and regulate most GPCRs [22,23]. Through interaction of its C-terminus with G protein $\beta\gamma$ subunits, GRK translocates to plasma membrane [24] and specifically phosphorylates agonist-occupied or conformationally activated GPCRs [22,23]. GRK-catalyzed phosphorylation, which leads to subsequent arrestin binding, represents a major mechanism for homologous desensitization of GPCRs [22,23].

GRK2 phosphorylation occurs in both the α_{2A} - and $\alpha_{2B}AR$ subtypes. A tetraserine sequence (S-296-299) in the 3i loop of the $\alpha_{2A}AR$ [25] and non-contiguously distributed serines in the 3i loop of the $\alpha_{2B}AR$ subtype [26] have been identified as GRK phosphorylation sites. By contrast, the $\alpha_{2C}AR$ subtype does not appear to be a substrate for GRK-catalyzed phosphorylation, even though its 3i loop contains multiple serine and threonine residues organized in a putative GRK favored motif [27]. The fact that the $\alpha_{2A}AR$ bearing an $\alpha_{2C}AR$ 3i loop but not the $\alpha_{2C}AR$ bearing an $\alpha_{2A}AR$ 3i loop gets phosphorylated upon agonist stimulation suggests that agonist-induced conformational change of the receptor backbone determines the level of $\alpha_{2}AR$ phosphorylation by GRK [27].

Direct interaction of the $\alpha_{2A}AR$ with GRK2 involves the 2 and 3 intracellular (2i and 3i) loops but not the 1i loop or the Ctail of the $\alpha_{2A}AR$ [28]. Within the $\alpha_{2A}AR$ 3iloop, several basic

residues at the membrane proximal N- and C-terminal regions as well as in a region adjacent to the phosphorylation sites mediate association with GRK2 [28].

The $\alpha_{2A}AR$ also can be phosphorylated by PKC [29,30] at residues located at the N- and C-terminal regions of the 3i loop [30–32]. Phosphorylation of $\alpha_{2A}AR$ by PKC can cause heterologous desensitization of the $\alpha_{2A}AR$ [29], and may also affect constitutive coupling of G proteins [30]. Therefore, PKC phosphorylation may represent a mechanism for crosstalk between $\alpha_{2A}AR$ -mediated and other signaling pathways.

2.3. Proteins interacting with the C-terminus of the α_2AR

The α_2AR has a relatively short C-terminal cytoplasmic tail that has been implicated in receptor downregulation [33]. The C-terminal domains of all three α_2AR subtypes also have been shown to interact with α -subunit of eukaryotic translation initiation factor 2B (eIF-2B) [34] as well as with the amyloid precursor like protein 1 (APLP1) [35], a homologue of the β -amyloid precursor protein (APP) involved in Alzheimer's disease [36]. Coexpression of APLP1 with the $\alpha_{2A}AR$ in HEK cells significantly increases $\alpha_{2A}AR$ -mediated inhibition of adenylyl cyclase activity [35]. The functional relevance of α_2AR interactions with these proteins in native tissues has not yet been established.

2.4. Scaffolding proteins interacting with the 3i loop of the $\alpha_2 AR$

In polarized renal epithelial cells, all three subtypes of α_2AR are primarily localized at the basolateral surface and manifest a surface half life ($t_{1/2}$) of 10–12 h [37,38]. In an effort to map sequence regions responsible for α_2AR targeting and retention at the basolateral surface, Keefer et al. found that deletion of the third intracellular loop (3i loop) resulted in a much fast turnover of the α_2AR on that surface [39,40]. Furthermore, the entire 3i loop seems to be involved in $\alpha_{2A}AR$ basolateral retention, since no single region within the loop can fully account for the accelerated turnover of the $\Delta 3i\alpha_{2A}AR$ [41].

Given its importance in regulating α_2AR retention, the 3i loop has been used as a ligand to identify intracellular interacting proteins that may contribute to α_2AR retention at the cell surface. Two scaffolding proteins, 14-3-3 ζ [42] and spinophilin [43], were identified to interact with the 3i loops of all three α_2AR subtypes by gel overlay analysis and GST pull-down assay. Interestingly, interaction of the α_2AR with these two proteins involves multiple, non-contiguous regions of sequence of the 3i loop, concurring with the fact that multiple regions of the 3i loop contribute to α_2AR surface retention. In addition to 14-3-3 ζ and spinophilin, arrestin also binds to the 3i loop of α_2AR [44-46]. As discussed below, interaction of the 3i loop with these scaffolding proteins regulates both α_2AR trafficking and signaling.

3. Regulatory cycle of 14-3-3 ζ , arrestin and spinophilin with the α_2AR

To understand the functional relevance of interactions of arrestin, 14-3-3 ζ , and spinophilin with the 3i loop of α_2 ARs, we

explored whether these proteins share protein–protein interaction domains within the 3i loop of the $\alpha_{2A}AR$. Our data demonstrated that: (1) multiple, non-contiguous regions of sequence are needed for interactions of the $\alpha_{2A}AR$ loop with 14-3-3 ζ , arrestin, and spinophilin, (2) the relative affinity of the unphosphorylated 3i loop for interacting proteins is: spinophilin ((Sp151–444) \approx arrestin 3 \gg 14-3-3 ζ , 3) arrestin and 14-3-3 ζ interact with regions in the 3i loop that are not involved in coupling to G proteins, but that spinophilin requires both the amphipathic helices at the base of transmembrane (TM) domains 5 and 6 as well as non-contiguous regions of the 3i loop for its interactions with the $\alpha_{2A}AR$ [46].

One important question was whether or not these interactions occurred independently of one another in different target cells or differing compartments of a given cell, or whether they were part of a regulatory cycle in the context of an individual cell. Fig. 1 suggests a functional relationship among these interactions. Interactions of 14-3-3ζ are proposed to occur with the α_2AR in its inactive state. This interpretation derives from the finding that $\alpha_2AR-14-3-3\zeta$ interactions can be competed for by phosphorylated Raf peptides, but not by corresponding nonphosphorylated peptides [42]. Thus, the α_2AR appears to interact with 14-3-3ζ at a site shared by phosphorylated Raf, as initially demonstrated by Muslin and coworkers [47,48]. Since α_2 AR activation leads to downstream Ras-Raf activation [49], it is reasonable to propose that α_2AR activation would ultimately disrupt interaction with 14-3-37 due to production of the endogenous competitor, phosphorylated Raf. In contrast to loss of $\alpha_2AR-14-3-3\zeta$ interactions upon agonist binding to the receptor, agonist activation enhances the binding of both arrestin and spinophilin [43,46] with the α_2AR . Indeed, spinophilin and arrestin compete for interaction with the α_2 AR [46]. It appears that the selection between α_2 AR binding to

arrestin or to spinophilin depends on the phosphorylation state of the receptor. Whereas arrestin binds more effectively to the GRK-phosphorylated receptor, spinophilin favors interactions with the non-phosphorylated receptor [46]. Thus, there is an equilibrium between agonist-receptor–arrestin and agonist-receptor–spinophilin interactions, and this equilibrium can be altered by changes in available concentrations of arrestin versus spinophilin as well as the phosphorylation state of the α_2AR in the target cell. Spinophilin appears to serve as a functional antagonist of arrestin functions, both those that lead to receptor deactivation and redistribution and those that contribute to receptor activation of signaling [50]. Below, we discuss the functional relevance of α_2AR interaction with arrestin and spinophilin, respectively.

4. Arrestin plays multiple roles in regulating α_2 AR trafficking and signaling

Arrestin is a critical regulator for almost all known GPCRs. Arrestin was first discovered for its role in desensitization ("arresting") of phototransduction [51]. In response to light, rhodopsin undergoes conformational changes induced by light-evoked electronic changes in its covalently bound ligand, retinol. These changes result in activation of the visual G protein, transducin. In addition to activation of molecular pathways that mediate the visual response, signal activation also results in activation of rhodopsin kinase, phosphorylation of rhodopsin, and stabilization of rhodopsin's interaction with arrestin (the "48K antigen") [52–54]. Arrestin binding to rhodopsin leads to stabilization of rhodopsin's phosphorylated state and to functional uncoupling from transducin, thus terminating activation.

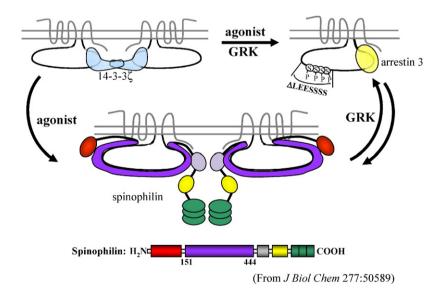


Fig. 1 – Postulated regulatory cycle for interactions of spinophilin, 14-3-3 ζ and arrestin 3 with the 3i loop of the $\alpha_{2A}AR$. The interactions of the $\alpha_{2}AR$ with 14-3-3 ζ likely occur when the receptor is in an agonist naïve state; these interactions might contribute to receptor targeting and retention at the cell surface, but the functional role of $\alpha_{2}AR$ -14-3-3 ζ interactions has not been established. Agonist occupancy can stabilize the $\alpha_{2}AR$ interaction with arrestin as well as with spinophilin, depending on the phosphorylation state of the receptor. Arrestin preferentially binds to GRK-phosphorylated $\alpha_{2}AR$, whereas spinophilin prefers to bind to the non-phosphorylated receptor. Spinophilin and arrestin compete for interaction with the $\alpha_{2}AR$ 3i loop.

Visual arrestin is a member of a protein family of arrestins [55]. Arrestins 1 (rods) and 4 (cones) are expressed in the visual system. Arrestins 2 (also known as β -arrestin 1) and 3 (β -arrestin 2) are ubiquitously expressed. A role of arrestin has been revealed not only in terminating signaling pathways [56], but also in serving as an adaptor protein bringing these receptors into association with clathrin-coated pits, thus facilitating agonist-evoked GPCR internalization [57,58]. Furthermore, arrestin has been implicated as a scaffold for GPCR interaction with other signaling pathways, such as extracellular signal-regulated kinase (ERK) [59] and c-Jun amino-terminal kinase (JNK) [60] pathways. Thus, arrestin appears to serve as a molecular switch for signal activation as well as deactivation and receptor redistribution.

All three α_2AR subtypes interact with arrestin 3 [44–46]. The $\alpha_{2B}AR$ also interacts with arrestin 2 with a relatively lower affinity than that with arrestin 3 [45]. Arrestin regulation of α_2AR functions discussed below are based on studies on α_{2A} -and $\alpha_{2B}AR$ subtypes.

4.1. Arrestin stabilizes α_2AR phosphorylation

Arrestin enhances agonist-elicited GRK-catalyzed phosphorylation of many GPCRs [61-63]. This also holds true for the α₂ARs. Overexpression of arrestin 3 in COSM6 cells, which have a relatively low level of endogenous arrestin, greatly increases the level of agonist-induced α₂AR phosphorylation [50]. Overexpression of arrestin 3 does not affect GRK2 interaction with the receptor [50], indicating that increased phosphorylation of α₂AR observed with overexpression of arrestin 3 is likely due to stabilization of phosphorylation (i.e. preventing receptor dephosphorylation, as shown previously for the paradigmatic GPCR, rhodopsin [62,64,65]), rather than to enhancement of GRK2 association. Further corroboration of the importance of arrestin in achieving detectable phosphorylation of agonist-occupied α_2 AR is the evidence that in mouse embryonic fibroblasts (MEFs) derived from mice null for both arrestin 2 and arrestin 3 (Arr2,3^{-/-}), agonist-induced phosphorylation of the α_2 AR is more difficult to detect than in MEFs isolated from WT mice expressing arrestin [50].

4.2. Arrestin mediates α_2 AR endocytosis

Arrestin mediates agonist-evoked internalization of a number of GPCRs through clathrin-coated pits by directly interacting with clathrin [57] and AP2 [58]. Although the α_{2A} - and α_{2B} AR exhibit different internalization profiles in response to agonist [66,67], endocytosis of both subtypes requires the presence of arrestin, as revealed by immunofluorescence and cell surface ELISA approaches ([50]; Wang, Brady and Limbird, unpublished data). In WT cells, ~20% of the α_{2A} and ~40% of the α_{2B} AR undergo endocytosis after agonist treatment. However, in MEFs without arrestin expression (Arr2,3^{-/-}), no significant loss of surface α_2 AR following agonist stimulation is detected ([50]; Wang, Brady and Limbird, unpublished data).

Based on their abilities to associate with arrestin post endocytosis, GPCRs are divided into two classes. Endocytosis of so-called class A GPCRs is not accompanied by arrestin colocalization with receptors in an endocytosed compartment and receptor endocytosis is followed by recycling and resensitization [63,68]. On the other hand, following internalization of class B GPCRs, arrestin trafficks with the receptor to intracellular compartments, where subsequent GPCR trafficking to lysosomes leads to receptor degradation and receptor downregulation [55,63,68]. The α_2AR appears to be a class A receptor. Thus, arrestin-mediated internalization of the α_2AR serves as a prelude for receptor recycling. As discussed below, arrestin-mediated endocytosis and subsequent recycling of the α_2AR may lead to an acceleration of α_2AR -evoked signaling processes.

4.3. Arrestin regulates spatiotemporal properties of α_2AR -activated ERK signaling

GPCRs can activate ERK1/2 signaling through G protein-dependent and arrestin-dependent pathways [69]. G protein-dependent activation of ERK occurs transiently and active ERK signal is translocated into nuclei, whereas arrestin-dependent, G protein-independent activation of ERK has a sustained signal and is restricted to the cytosol [69,70]. Our studies have demonstrated that $\alpha_{2A}AR$ endogenously expressed in MEFs evokes ERK signaling in a G protein-dependent manner [50,71]. In this process, arrestin seems to be dispensable, since α_2 -agonists are able to evoke ERK activation in arrestin-deficient MEFs with a potency similar to that observed in WT cells [71].

Although not required for α_2 AR-evoked ERK activation per se, arrestin tightly regulates the time course of this process. Without arrestin expression, the $\alpha_{2A}AR$ -evoked ERK signal is much extended [50,71], consistent with the role of arrestin in desensitization. Deletion of the GRK phosphorylation sites from the $\alpha_{2A}AR$, which decreases the receptor binding affinity for arrestin, also leads to prolonged ERK activation [50]. More intriguingly, the rate of $\alpha_{2A}AR$ -evoked ERK activation appears to be slower in arrestin deficient cells than that in WT cells, especially when cells are restimulated after a 5-min stimulation and a 30-min wash (a protocol that allows monitoring resensitization) [50,71]. These findings suggest that arrestin plays a role in acceleration of α_2 AR-mediated ERK signaling, presumably through mediating endocytosis which leads to recycling and replenishment of the surface $\alpha_{2A}AR$ pool for agonist activation. Similarly, arrestin-mediated endocytosis has been previously suggested as a prerequisite for β₂AR resensitization [72].

Arrestin also is critical in defining the spatial profiles of α_2 AR-evoked ERK activation. In WT MEFs, α_2 AAR-evoked ERK phosphorylation is first detected in cytosol (2 min) and then translocated into nuclei at later time points (10 min). However, in the absence of arrestin, α_2 AAR-evoked ERK phosphorylation is enriched in the nuclei of target cells from the earliest time point (1 min) evaluated [71].

4.4. Arrestin serves as a molecular switch determining Src involvement in α_2AR -activation of ERK

Studies done by Dr. Lefkowitz and colleagues first identified arrestin as a signaling scaffold linking β_2AR , Src and MEK to ERK activation [73,74]. Using pharmacological inhibitor blocking and dominant negative inhibition approaches, we found that Src tyrosine kinase also is involved in endogenous $\alpha_{2A}AR$ -mediated ERK activation, and Src involvement in this process requires the

presence of arrestin [71]. Stimulation of $\alpha_{2A}AR$ enhances the complex formation of Src and arrestin, and promotes Src activation. When arrestin is absent, the $\alpha_{2A}AR$ is still able to elicit ERK signaling, but through a Src-independent pathway [71]. Src-dependent and -independent pathways both converge on the Ras-Raf-MEK pathway [75] to activate ERK phosphorylation [71]. Therefore, in the G protein-dependent ERK activation by $\alpha_{2A}AR$, arrestin serves as molecular switch, linking $\alpha_{2A}AR$ to the Src-dependent but not to the Src-independent pathway. The receptor tyrosine kinase, EGFR, is not required for $\alpha_{2A}AR$ -evoked ERK signaling [71], despite their reported involvement in ERK activation by many other GPCRs [74].

5. Regulation of the α_2AR by the multi-domain protein, spinophilin

Spinophilin (also known as Neurabin II) is a ubiquitous protein named for its enrichment in dendritic spines [76]. Spinophilin has multiple domains including an actin-binding domain, protein phosphatase 1 (PP1)-binding and regulatory domain, a PSD-95/Discs large/ZO-1 homology (PDZ) domain, and three coiled-coil domains. In the nervous system, spinophilin targets PP1 to ionotropic glutamate receptors, thus modulating synaptic plasticity [77,78]. Through its interaction with F-actin, spinophilin also has been implicated in spine morphogenesis [77,79] and neuronal migration [80,81]. Studies by Smith et al. [82] and Richman et al. [43] demonstrated that the sequence region encompassed by spinophilin amino acids 151-444 (Sp151–444) interacts with GPCRs, specifically the G_i/G_o-coupled D2 dopamine receptor [82] and all three α_2 AR subtypes [43], via their 3i loops. More recently, interaction of spinophilin with the 3i loop of α_1 AR also has been reported [83]. In contrast, neurabin I, which is highly homologous to neurabin II/spinophilin except in the "GPCR binding domain", does not interact in a detectable fashion with these GPCRs [43,84].

5.1. Spinophilin tethers the α_2AR at the cell surface

In renal epithelial cells (including MDCKII cells), endogenous spinophilin is enriched at the basolateral surface, where the α_2 AR subtypes localize [79]. Taking advantage of the unique targeting property of the $\alpha_{2B}AR$ subtype in polarized MDCK cells (random delivery to both apical and basolateral surfaces with rapid turnover at the apical surface), Brady et al. found that redirection of the receptor binding domain of spinophilin to the apical surface significantly extends the half life of $\alpha_{\text{2B}} AR$ at this surface compartment [85], consistent with the interpretation that endogenous spinophilin is responsible for, at least in part, surface retention of the α_2AR at the basolateral surface. Moreover, in MEFs without spinophilin expression (derived from $Sp^{-/-}$ mouse embryos), turnover of the $\alpha_{2B}AR$ from the cell surface following agonist treatment is much accelerated and occurs to a larger extent than that in WT cells expressing spinophilin [85]. Since spinophilin and arrestin both interact with the α_2 AR 3i loop and are mutually exclusive for this interaction, the accelerated internalization of the α_2 AR is presumably due to unimpeded arrestin binding to the receptor in the absence of spinophilin, which leads to receptor endocytosis.

5.2. Spinophilin competes for agonist-induced GRK2 binding to the α_2 AR- $G_{\beta\gamma}$ complex

Spinophilin interaction with the $\alpha_{2A}AR$ requires the N- and Cterminal ends of the 3i loop of the receptor, which form amphipathic helices predicted to lie just beneath surface membrane [46]. These helices also have been implicated in receptor-G protein coupling. However, spinophilin binding seems not to perturb α_2AR -G protein coupling (Wang and Limbird, unpublished finding). Thus, spinophilin likely recognizes the $\alpha_2AR\text{--}G$ protein complex. In support of this hypothesis, we found that agonist-enhanced interaction of spinophilin with the α_2AR is diminished when cells are pretreated with pertussis toxin or expressing GRK2-C terminus [50], both conditions which impair functional interaction between GPCR and the $G_{i/o}$ subfamily of G proteins and block $G_{\beta\gamma}$ -mediated signal transduction. Thus, spinophilin interaction with the α_2AR seems to require $\alpha_2AR\text{--}G_{\beta\gamma}$ interactions and/or G protein-mediated signaling events. Whether or not spinophilin directly interacts with the $\beta\gamma$ subunits of G proteins has not yet been established.

The N- and C-terminal proximal regions of the α_2AR 3i loop that interact with spinophilin [46] are also involved in GRK2 binding [28], raising the possibility of competition between spinophilin and GRK2 for the agonist-occupied receptor. Indeed, agonist-induced GRK2 association with the α_2AR is prevented when spinophilin is overexpressed in the same cell background [50]. However, under this circumstance the amount of GRK2 translocated to the cell membrane following agonist treatment is not perturbed [50], indicating that spinophilin blocks binding to receptor– $\beta\gamma$ interactions but does not perturb GRK2 translocation.

5.3. Spinophilin attenuates α_2AR phosphorylation

Spinophilin competes for α₂AR interaction with GRK2 and arrestin, which are responsible for catalyzing and stabilizing α_2 AR phosphorylation, respectively. Therefore, association of spinophilin with the α_2AR leads to alteration of α_2AR phosphorylation following agonist stimulation. In MEFs without spinophilin expression (where arrestin action is unopposed), agonist stimulation causes a significant increase in agonist-elicited phosphorylation of the $\alpha_2 AR$ as compared to that in WT cells [50]. On the other hand, overexpression of spinophilin in cells significant attenuates agonist-induced α_2 AR phosphorylation [86]. Intriguingly, this spinophilin effect requires the presence of arrestin to be detected, since in cells with low levels of endogenous arrestin expression, such as COS M6 cells, the effect of spinophilin on α_2AR phosphorylation is negligible unless arrestin is heterologously expressed in these cells (which stables the α_2AR phosphorylation) [50]. These findings suggest that spinophilin principally functions as an antagonist of arrestin actions, or as "arrestin's nemesis".

5.4. Spinophilin regulates α_2AR signaling duration and response sensitivity

Arrestin association with the α_2AR results in desensitization as well as acceleration of α_2AR -mediated ERK signaling. Through competing for GRK and arrestin association with

the α_2AR , spinophilin counteracts these arrestin-mediated functions. In spinophilin-deficient MEFs, ERK activation by endogenously expressed $\alpha_{2A}AR$ desensitizes significantly faster than that in WT MEFs [50]. Also, the rate of $\alpha_{2A}AR$ mediated ERK is more rapid in Sp^{-/-} cells than in WT cells, especially when cells are restimulated after a 5-min stimulation and a 30-min wash (representing resensitization) [50]. Using combined gene knockout and RNA silencing strategies, we confirmed that both desensitization and acceleration of α_{2A} AR-mediated ERK signaling in Sp^{-/-} cells depends on the presence of arrestin [50]. As discussed earlier, arrestindependent acceleration of ERK stimulation is conceivably due to recycling of $\alpha_{2A}AR$ to the surface following arrestindependent endocytosis, increasing the receptor population available for reactivation. Consistent with this hypothesis, blockade of clathrin-coated pit-mediated $\alpha_{2A}AR$ internalization by incubation of MEFs in K+-depleted medium (low [K+]o) eliminates the accelerated rate of $\alpha_{2A}AR$ -mediated ERK activation seen in $Sp^{-/-}$ cells when compared to WT MEFs. Taken together, through antagonizing arrestin functions, spinophilin regulates both α2AR signaling duration and response sensitivity.

5.5. Other potential functions of spinophilin

Spinophilin contains multiple domains. However, the receptor binding domain of spinophilin alone seems to be sufficient to compete for arrestin binding to the α_2AR [86]. How the other domains of spinophilin may contribute to antagonism of arrestin functions and/or link the receptor to signaling and regulatory pathways has not been rigorously explored. The

PP1 binding domain of spinophilin may recruit PP1 to regulate the phosphorylation level of the α_2AR , thus affecting the interaction equilibrium between spinophilin and arrestin with the receptor [46]. The PDZ domain of spinophilin has been shown to interact with C-terminal end of the p70^{S6} kinase (p70^{S6K}) [87,88]. Stimulation of $\alpha_{2A}AR$ can result in activation of p70^{S6K} [86]. Therefore, spinophilin may serve as a scaffold linking the $\alpha_{2A}AR$ to the p70^{S6K} signaling pathway.

By analogy to arrestin enrichment at the cell surface following stimulation of GPCRs, α_2AR activation also leads to enrichment of spinophilin at the surface [89]. This phenomenon requires the actin-binding domain of spinophilin and appears to involve G protein-mediated signaling pathways, since it can be eliminated by pertussis toxin treatment of target cells [89]. Intriguingly, only agonist activation of the α_{2A} but not the $\alpha_{2B}AR$ subtype can cause this effect in a detectable fashion, despite the fact that both subtypes interact with spinophilin [89]. This subtype-selective enrichment of spinophilin may represent a mechanism contributing to subtype signaling diversity between the α_{2A} and the $\alpha_{2B}AR$, which may serve as a base for different physiological functions elicited by these two subtypes [90].

6. In vivo relevance of the reciprocal regulation of α_2AR by spinophilin and arrestin

We have identified spinophilin antagonism of multiple arrestin functions in regulating the α_2AR [50]. Fig. 2 provides a schematic diagram of the reciprocal regulation of α_2AR by spinophilin and arrestin. Spinophilin interaction with α_2ARs is

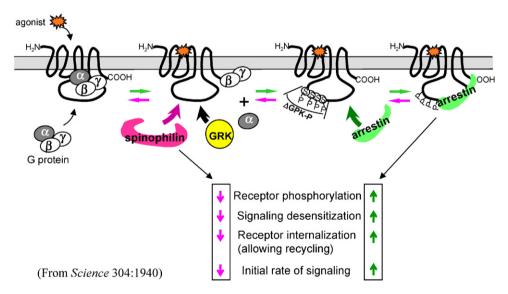


Fig. 2 – Model of α_2AR interactions with arrestin, and spinophilin, and their functional consequences. GRK2 interacts with the α_2AR – $G_{\beta\gamma}$ complex and mediates α_2AR phosphorylation. Spinophilin, which also recognizes the α_2AR – $G_{\beta\gamma}$ complex and shares the interacting sites on the 3i loop with GRK2, competes for GRK2 association with the α_2AR . GRK2-catalyzed phosphorylation of the α_2AR is stabilized by arrestin 3 binding to the receptor, and is diminished by increasing the relative concentration of spinophilin compared to arrestin in target cells. Arrestin binding to the α_2AR induces desensitization by disrupting coupling to G proteins and mediates endocytosis by facilitating binding to the clathrin-coated pit machinery. One outcome of α_2AR endocytosis is receptor recycling, which may facilitate signaling activation and resensitization through replenishment of surface α_2AR available for activation. These arrestin-mediated functions are antagonized by spinophilin interaction with the α_2AR .

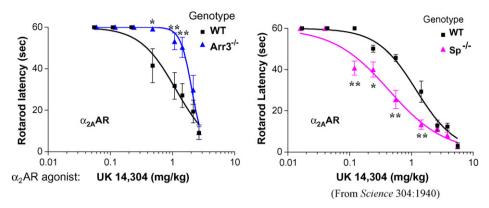


Fig. 3 – Reciprocal effects of spinophilin and arrestin 3 on α_2 AR-mediated sedation in vivo. Sedation in response to α_2 AR-agonists was assessed via rotarod latency following administration of increasing doses of the α_2 -agonist UK 14,304. The EC₅₀ values for sedation in Arr3^{-/-} and corresponding WT litter mates (n = 5 for each genotype) are 2.1 and 1.1 mg/kg, respectively, and the EC₅₀ values for sedation in Sp^{-/-} and corresponding WT mice (n = 6 for dose 0.56 mg/kg and n = 11 for the rest doses for each genotype) are 0.4 and 1.2 mg/kg, respectively. p < 0.01; p < 0.05.

enhanced by agonist occupancy but diminished by GRK2-catalyzed receptor phosphorylation. This is qualitatively different from arrestin interactions with α_2AR , which are enhanced by phosphorylation of the receptor [55,91]. The ability of spinophilin to compete for GRK2 binding to the agonist- α_2AR - $G_{\beta\gamma}$ complex, thus blocking receptor phosphorylation and enhanced arrestin binding, may be the sole mechanism by which spinophilin antagonizes arrestin functions. However, we cannot rule out direct competition for arrestin binding by spinophilin, albeit diminished by α_2AR phosphorylation [46]. Regardless of whether either or both of these mechanisms dominate in intact cells, it is clear that spinophilin serves as a functional antagonist of the multiple functions of arrestin in receptor signaling and trafficking.

The data shown in Fig. 3 suggest that our in vitro findings indicating reciprocal regulation of α_2AR functions by spinophilin and arrestin have in vivo relevance. UK 14,304, an α_2 -agonist, evokes sedation in WT mice via activation of the $\alpha_{2A}AR$ subtype [5]. In Sp $^{-/-}$ mice, α_2 -agonists become more efficacious, manifest by a leftward shift in the UK 14,304 dose response curve for sedation (Fig. 3, left panel). In contrast, Arr3 $^{-/-}$ mice are more resistant to UK 14,304-evoked sedation, manifest by a rightward shift in the dose response curve (Fig. 3, right panel). Despite the unknown mechanism of $\alpha_{2A}AR$ elicited sedation, these in vivo data strongly suggest that spinophilin antagonism for arrestin functions in regulating $\alpha_{2A}AR$ exist in native target cells.

7. Conclusion

Interactions of the α_2AR with various surface and cytoplasmic proteins would represent an important mechanism regulating α_2AR -elicited physiological and pharmacological functions in response to different ligands, in different cell types and under different disease conditions. While heterologous systems are powerful in studying α_2AR interaction with other proteins, the ultimate goal is to identify the functional relevance of such interaction in native cells. Identification of more interactors of

the α_2AR and understanding of functional roles of the observed association would eventually provide therapeutic insights on manipulating α_2AR function in a variety of clinical settings, such as hypertension, pain diminution, attentional focus (as in attention deficit and hyperactivity disorder) and cognition enhancement.

Acknowledgements

Q.W. is supported by an American Heart Association Scientist Development grant. L.E.L. is supported by National Institutes of Health Grants HL43671 and DK43879.

REFERENCES

- [1] Wilson MH, Puranam RS, Ottman R, Gilliam C, Limbird LE, George Jr AL, et al. Evaluation of the alpha(2A)-adrenergic receptor gene in a heritable form of temporal lobe epilepsy. Neurology 1998;51:1730–1.
- [2] Schramm NL, McDonald MP, Limbird LE. The alpha(2a)adrenergic receptor plays a protective role in mouse behavioral models of depression and anxiety. J Neurosci 2001;21:4875–82.
- [3] MacMillan LB, Hein L, Smith MS, Piascik MT, Limbird LE. Central hypotensive effects of the alpha2a-adrenergic receptor subtype. Science 1996;273:801–3.
- [4] Altman JD, Trendelenburg AU, MacMillan L, Bernstein D, Limbird L, Starke K, et al. Abnormal regulation of the sympathetic nervous system in alpha2A-adrenergic receptor knockout mice. Mol Pharmacol 1999;56:154–61.
- [5] Lakhlani PP, MacMillan LB, Guo TZ, McCool BA, Lovinger DM, Maze M, et al. Substitution of a mutant alpha2aadrenergic receptor via "hit and run"; gene targeting reveals the role of this subtype in sedative, analgesic, and anesthetic-sparing responses in vivo. Proc Natl Acad Sci USA 1997;94:9950–5.
- [6] Stone LS, MacMillan LB, Kitto KF, Limbird LE, Wilcox GL. The alpha2a adrenergic receptor subtype mediates spinal analgesia evoked by alpha2 agonists and is necessary for

- spinal adrenergic-opioid synergy. J Neurosci 1997;17:7157–65.
- [7] Franowicz JS, Kessler LE, Borja CM, Kobilka BK, Limbird LE, Arnsten AF. Mutation of the alpha2A-adrenoceptor impairs working memory performance and annuls cognitive enhancement by guanfacine. J Neurosci 2002;22:8771–7.
- [8] Ma D, Zerangue N, Lin YF, Collins A, Yu M, Jan YN, et al. Role of ER export signals in controlling surface potassium channel numbers. Science 2001;291:316–9.
- [9] Marrs W, Kuperman J, Avedian T, Roth RH, Jentsch JD. Alpha-2 adrenoceptor activation inhibits phencyclidineinduced deficits of spatial working memory in rats. Neuropsychopharmacology 2005;30:1500–10.
- [10] Limbird LE. Receptors linked to inhibition of adenylate cyclase: additional signaling mechanisms. FASEB J 1988;2:2686–95.
- [11] Kobilka B. Adrenergic receptors as models for G proteincoupled receptors. Annu Rev Neurosci 1992;15:87–114.
- [12] Richman JG, Regan JW. Alpha 2-adrenergic receptors increase cell migration and decrease F-actin labeling in rat aortic smooth muscle cells. Am J Physiol 1998;274:C654–62.
- [13] Terrillon S, Bouvier M. Roles of G-protein-coupled receptor dimerization. EMBO Rep 2004;5:30–4.
- [14] Milligan G. G protein-coupled receptor dimerization: function and ligand pharmacology. Mol Pharmacol 2004:66:1–7.
- [15] Nobles M, Benians A, Tinker A. Heterotrimeric G proteins precouple with G protein-coupled receptors in living cells. Proc Natl Acad Sci USA 2005;102:18706–11.
- [16] Small KM, Schwarb MR, Glinka C, Theiss CT, Brown KM, Seman CA, et al. Alpha2A- and alpha2C-adrenergic receptors form homo- and heterodimers: the heterodimeric state impairs agonist-promoted GRK phosphorylation and beta-arrestin recruitment. Biochemistry 2006;45:4760-7.
- [17] Xu J, He J, Castleberry AM, Balasubramanian S, Lau AG, Hall RA. Heterodimerization of alpha 2A- and beta 1-adrenergic receptors. J Biol Chem 2003;278:10770–7.
- [18] Prinster SC, Holmqvist TG, Hall RA. Alpha2C-adrenergic receptors exhibit enhanced surface expression and signaling upon association with beta2-adrenergic receptors. J Pharmacol Exp Ther 2006;318:974–81.
- [19] Jordan BA, Gomes I, Rios C, Filipovska J, Devi LA. Functional interactions between mu opioid and alpha 2A-adrenergic receptors. Mol Pharmacol 2003;64:1317–24.
- [20] Zhang YQ, Limbird LE. Hetero-oligomers of alpha2Aadrenergic and mu-opioid receptors do not lead to transactivation of G-proteins or altered endocytosis profiles. Biochem Soc Trans 2004;32:856–60.
- [21] Rios C, Gomes I, Devi LA. Interactions between delta opioid receptors and alpha-adrenoceptors. Clin Exp Pharmacol Physiol 2004;31:833–6.
- [22] Pitcher JA, Freedman NJ, Lefkowitz RJ. G protein-coupled receptor kinases. Annu Rev Biochem 1998;67:653–92.
- [23] Gainetdinov RR, Premont RT, Bohn LM, Lefkowitz RJ, Caron MG. Desensitization of G protein-coupled receptors and neuronal functions. Annu Rev Neurosci 2004;27:107–44.
- [24] Krupnick JG, Benovic JL. The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annu Rev Pharmacol Toxicol 1998;38:289–319.
- [25] Eason MG, Moreira SP, Liggett SB. Four consecutive serines in the third intracellular loop are the sites for betaadrenergic receptor kinase-mediated phosphorylation and desensitization of the alpha 2A-adrenergic receptor. J Biol Chem 1995;270:4681–8.
- [26] Jewell-Motz EA, Liggett SB. An acidic motif within the third intracellular loop of the alpha2C2 adrenergic receptor is required for agonist-promoted phosphorylation and desensitisation. Biochemistry 1995;34:11946–53.

- [27] Jewell-Motz EA, Small KM, Theiss CT, Liggett SB. Alpha 2A/ alpha 2C-adrenergic receptor third loop chimera show that agonist interaction with receptor subtype backbone establishes G protein-coupled receptor kinase phosphorylation. J Biol Chem 2000;275:28989–93.
- [28] Pao CS, Benovic JL. Structure/function analysis of alpha2Aadrenergic receptor interaction with G protein-coupled receptor kinase 2. J Biol Chem 2005;280:11052–8.
- [29] Liang M, Eason MG, Jewell-Motz EA, Williams MA, Theiss CT, Dorn GW, et al. Phosphorylation and functional desensitization of the alpha2A-adrenergic receptor by protein kinase C. Mol Pharmacol 1998;54:44–9.
- [30] Zhu Q, Qi LJ, Shi A, Bou-Samra A, Deth RC. Protein kinase C regulates alpha(2A/D)-adrenoceptor constitutive activity. Pharmacology 2004;71:80–90.
- [31] Liang M, Freedman NJ, Theiss CT, Liggett SB. Serine 232 of the alpha(2A)-adrenergic receptor is a protein kinase Csensitive effector coupling switch. Biochemistry 2001;40:15031–7.
- [32] Liang M, Eason MG, Theiss CT, Liggett SB. Phosphorylation of Ser360 in the third intracellular loop of the alpha2A-adrenoceptor during protein kinase C-mediated desensitization. Eur J Pharmacol 2002;437:41–6.
- [33] Eason MG, Jacinto MT, Theiss CT, Liggett SB. The palmitoylated cysteine of the cytoplasmic tail of alpha 2Aadrenergic receptors confers subtype-specific agonistpromoted downregulation. Proc Natl Acad Sci USA 1994:91:11178–82.
- [34] Klein U, Ramirez MT, Kobilka BK, von ZM. A novel interaction between adrenergic receptors and the alphasubunit of eukaryotic initiation factor 2B. J Biol Chem 1997;272:19099–102.
- [35] Weber B, Schaper C, Scholz J, Bein B, Rodde C, Tonner H. Interaction of the amyloid precursor like protein 1 with the alpha(2A)-adrenergic receptor increases agonist-mediated inhibition of adenylate cyclase. Cell Signal; 2006.
- [36] Selkoe DJ. Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 2001;81:741–66.
- [37] Keefer JR, Limbird LE. The alpha 2A-adrenergic receptor is targeted directly to the basolateral membrane domain of Madin–Darby canine kidney cells independent of coupling to pertussis toxin-sensitive GTP-binding proteins. J Biol Chem 1993;268:11340–7.
- [38] Wozniak M, Limbird LE. The three alpha 2-adrenergic receptor subtypes achieve basolateral localization in Madin–Darby canine kidney II cells via different targeting mechanisms. J Biol Chem 1996;271:5017–24.
- [39] Keefer JR, Kennedy ME, Limbird LE. Unique structural features important for stabilization versus polarization of the alpha 2A-adrenergic receptor on the basolateral membrane of Madin–Darby canine kidney cells. J Biol Chem 1994;269:16425–32.
- [40] Saunders C, Limbird LE. Microtubule-dependent regulation of alpha(2B) adrenergic receptors in polarized MDCKII cells requires the third intracellular loop but not G protein coupling. Mol Pharmacol 2000;57:44–52.
- [41] Edwards SW, Limbird LE. Role for the third intracellular loop in cell surface stabilization of the alpha2A-adrenergic receptor. J Biol Chem 1999;274:16331–6.
- [42] Prezeau L, Richman JG, Edwards SW, Limbird LE. The zeta isoform of 14-3-3 proteins interacts with the third intracellular loop of different alpha2-adrenergic receptor subtypes. J Biol Chem 1999;274:13462–9.
- [43] Richman JG, Brady AE, Wang Q, Hensel JL, Colbran RJ, Limbird LE. Agonist-regulated interaction between alpha 2adrenergic receptors and spinophilin. J Biol Chem 2001;276:15003–8.
- [44] Wu G, Krupnick JG, Benovic JL, Lanier SM. Interaction of arrestins with intracellular domains of muscarinic and

- alpha2-adrenergic receptors. J Biol Chem 1997;272:17836–42
- [45] DeGraff JL, Gurevich VV, Benovic JL. The third intracellular loop of alpha 2-adrenergic receptors determines subtype specificity of arrestin interaction. J Biol Chem 2002;277:43247–52.
- [46] Wang Q, Limbird LE. Regulated interactions of the alpha 2A adrenergic receptor with spinophilin, 14-3-3zeta, and arrestin 3. J Biol Chem 2002;277:50589–96.
- [47] Muslin AJ, Tanner JW, Allen PM, Shaw AS. Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 1996;84:889–97.
- [48] Yaffe MB, Rittinger K, Volinia S, Caron PR, Aitken A, Leffers H, et al. The structural basis for 14-3-3: phosphopeptide binding specificity. Cell 1997;91:961–71.
- [49] Alblas J, van Corven EJ, Hordijk PL, Milligan G, Moolenaar WH. Gi-mediated activation of the p21ras-mitogenactivated protein kinase pathway by alpha 2-adrenergic receptors expressed in fibroblasts. J Biol Chem 1993;268:22235–8.
- [50] Wang Q, Zhao J, Brady AE, Feng J, Allen PB, Lefkowitz RJ, et al. Spinophilin blocks arrestin actions in vitro and in vivo at G protein-coupled receptors. Science 2004;304:1940–4.
- [51] Pfister C, Chabre M, Plouet J, Tuyen VV, De Kozak Y, Faure JP, et al. Retinal S antigen identified as the 48K protein regulating light-dependent phosphodiesterase in rods. Science 1985;228:891–3.
- [52] Wilden U, Hall SW, Kuhn H. Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments. Proc Natl Acad Sci USA 1986;83:1174–8.
- [53] Sitaramayya A, Liebman PA. Phosphorylation of rhodopsin and quenching of cyclic GMP phosphodiesterase activation by ATP at weak bleaches. J Biol Chem 1983;258:12106–9.
- [54] Palczewski K, McDowell JH, Hargrave PA. Purification and characterization of rhodopsin kinase. J Biol Chem 1988;263:14067–73.
- [55] Perry SJ, Lefkowitz RJ. Arresting developments in heptahelical receptor signaling and regulation. Trends Cell Biol 2002;12:130–8.
- [56] Benovic JL, Strasser RH, Caron MG, Lefkowitz RJ. Betaadrenergic receptor kinase: identification of a novel protein kinase that phosphorylates the agonist-occupied form of the receptor. Proc Natl Acad Sci USA 1986;83:2797–801.
- [57] Goodman Jr OB, Krupnick JG, Santini F, Gurevich VV, Penn RB, Gagnon AW, et al. Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature 1996;383:447–50.
- [58] Laporte SA, Oakley RH, Zhang J, Holt JA, Ferguson SS, Caron MG, et al. The beta2-adrenergic receptor/betaarrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proc Natl Acad Sci USA 1999;96:3712–7.
- [59] Luttrell LM, Roudabush FL, Choy EW, Miller WE, Field ME, Pierce KL, et al. Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. Proc Natl Acad Sci USA 2001;98:2449–54.
- [60] McDonald PH, Chow CW, Miller WE, Laporte SA, Field ME, Lin FT, et al. Beta-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 2000;290:1574–7.
- [61] Benovic JL, Kuhn H, Weyand I, Codina J, Caron MG, Lefkowitz RJ. Functional desensitization of the isolated beta-adrenergic receptor by the beta-adrenergic receptor kinase: potential role of an analog of the retinal protein arrestin (48-kDa protein). Proc Natl Acad Sci USA 1987;84:8879–82.
- [62] Byk T, Bar-Yaacov M, Doza YN, Minke B, Selinger Z. Regulatory arrestin cycle secures the fidelity and maintenance of the fly photoreceptor cell. Proc Natl Acad Sci USA 1993;90:1907–11.

- [63] Oakley RH, Laporte SA, Holt JA, Barak LS, Caron MG. Association of beta-arrestin with G protein-coupled receptors during clathrin-mediated endocytosis dictates the profile of receptor resensitization. J Biol Chem 1999;274:32248–57.
- [64] Alloway PG, Howard L, Dolph PJ. The formation of stable rhodopsin-arrestin complexes induces apoptosis and photoreceptor cell degeneration. Neuron 2000;28:129–38.
- [65] Kiselev A, Socolich M, Vinos J, Hardy RW, Zuker CS, Ranganathan R. A molecular pathway for light-dependent photoreceptor apoptosis in Drosophila. Neuron 2000;28:139–52.
- [66] Daunt DA, Hurt C, Hein L, Kallio J, Feng F, Kobilka BK. Subtype-specific intracellular trafficking of alpha2adrenergic receptors. Mol Pharmacol 1997;51:711–20.
- [67] Schramm NL, Limbird LE. Stimulation of mitogen-activated protein kinase by G protein-coupled alpha(2)-adrenergic receptors does not require agonist-elicited endocytosis. J Biol Chem 1999;274:24935–40.
- [68] Oakley RH, Laporte SA, Holt JA, Caron MG, Barak LS. Differential affinities of visual arrestin, beta arrestin1, and beta arrestin 2 for G protein-coupled receptors delineate two major classes of receptors. J Biol Chem 2000;275: 17201–10.
- [69] Wei H, Ahn S, Shenoy SK, Karnik SS, Hunyady L, Luttrell LM, et al. Independent {beta}-arrestin 2 and G proteinmediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proc Natl Acad Sci USA 2003;10782–7.
- [70] Tohgo A, Pierce KL, Choy EW, Lefkowitz RJ, Luttrell LM. Beta-arrestin scaffolding of the ERK cascade enhances cytosolic ERK activity but inhibits ERK-mediated transcription following angiotensin AT1a receptor stimulation. J Biol Chem 2002;277:9429–36.
- [71] Wang Q, Lu R, Zhao J, Limbird LE. Arrestin serves as a molecular switch, linking endogenous alpha 2-adrenergic receptor to SRC-dependent but not SRC-independent ERK activation. J Biol Chem; 2006.
- [72] Zhang J, Barak LS, Winkler KE, Caron MG, Ferguson SS. A central role for beta-arrestins and clathrin-coated vesiclemediated endocytosis in beta2-adrenergic receptor resensitization. Differential regulation of receptor resensitization in two distinct cell types. J Biol Chem 1997;272:27005–14.
- [73] Luttrell LM, Ferguson SS, Daaka Y, Miller WE, Maudsley S, la Rocca GJ, et al. Beta-arrestin-dependent formation of beta 2 adrenergic receptor–Src protein kinase complexes. Science 1999;283:655–61.
- [74] Pierce KL, Luttrell LM, Lefkowitz RJ. New mechanisms in heptahelical receptor signaling to mitogen activated protein kinase cascades. Oncogene 2001;20:1532–9.
- [75] Hawes BE, van BT, Koch WJ, Luttrell LM, Lefkowitz RJ. Distinct pathways of Gi- and Gq-mediated mitogenactivated protein kinase activation. J Biol Chem 1995;270:17148–53.
- [76] Allen PB, Ouimet CC, Greengard P. Spinophilin, a novel protein phosphatase 1 binding protein localized to dendritic spines. Proc Natl Acad Sci USA 1997;94:9956–61.
- [77] Feng J, Yan Z, Ferreira A, Tomizawa K, Liauw JA, Zhuo M, et al. Spinophilin regulates the formation and function of dendritic spines. Proc Natl Acad Sci USA 2000;97:9287–92.
- [78] Yan Z, Hsieh-Wilson L, Feng J, Tomizawa K, Allen PB, Fienberg AA, et al. Protein phosphatase 1 modulation of neostriatal AMPA channels: regulation by DARPP-32 and spinophilin. Nat Neurosci 1999;2:13–7.
- [79] Satoh A, Nakanishi H, Obaishi H, Wada M, Takahashi K, Satoh K, et al. Neurabin-II/spinophilin. An actin filamentbinding protein with one PDZ domain localized at

- cadherin-based cell-cell adhesion sites. J Biol Chem 1998:273:3470–5.
- [80] Tsukada M, Prokscha A, Ungewickell E, Eichele G. Doublecortin association with actin filaments is regulated by neurabin II. J Biol Chem 2005;280:11361–8.
- [81] Tsukada M, Prokscha A, Eichele G. Neurabin II mediates doublecortin-dephosphorylation on actin filaments. Biochem Biophys Res Commun 2006;343:839–47.
- [82] Smith FD, Oxford GS, Milgram SL. Association of the D2 dopamine receptor third cytoplasmic loop with spinophilin, a protein phosphatase-1-interacting protein. J Biol Chem 1999:274:19894–900.
- [83] Wang X, Zeng W, Soyombo AA, Tang W, Ross EM, Barnes AP, et al. Spinophilin regulates Ca2+ signalling by binding the N-terminal domain of RGS2 and the third intracellular loop of G-protein-coupled receptors. Nat Cell Biol 2005;7:405–11.
- [84] MacMillan LB, Bass MA, Cheng N, Howard EF, Tamura M, Strack S, et al. Brain actin-associated protein phosphatase 1 holoenzymes containing spinophilin, neurabin, and selected catalytic subunit isoforms. J Biol Chem 1999;274:35845–54.
- [85] Brady AE, Wang Q, Colbran RJ, Allen PB, Greengard P, Limbird LE. Spinophilin stabilizes cell surface expression of

- alpha 2B-adrenergic receptors. J Biol Chem 2003;278:32405–
- [86] Wang Q, Limbird LE. Unpublished findings; 2006.
- [87] Buchsbaum RJ, Connolly BA, Feig LA. Regulation of p70 S6 kinase by complex formation between the Rac guanine nucleotide exchange factor (Rac-GEF) Tiam1 and the scaffold spinophilin. J Biol Chem 2003;278:18833–41.
- [88] Burnett PE, Blackshaw S, Lai MM, Qureshi IA, Burnett AF, Sabatini DM, et al. Neurabin is a synaptic protein linking p70 S6 kinase and the neuronal cytoskeleton. Proc Natl Acad Sci USA 1998;95:8351–6.
- [89] Brady AE, Wang Q, Allen PB, Rizzo M, Greengard P, Limbird LE. Alpha 2-adrenergic agonist enrichment of spinophilin at the cell surface involves beta gamma subunits of Gi proteins and is preferentially induced by the alpha 2Asubtype. Mol Pharmacol 2005;67:1690–6.
- [90] Philipp M, Brede M, Hein L. Physiological significance of alpha(2)-adrenergic receptor subtype diversity: one receptor is not enough. Am J Physiol Regul Integr Comp Physiol 2002;283:R287–95.
- [91] Shenoy SK, Lefkowitz RJ. Multifaceted roles of betaarrestins in the regulation of seven-membrane-spanning receptor trafficking and signalling. Biochem J; September 8, 2003 [Epub ahead of print].